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Abstract

In this note, a basic theory of wave propagation in dielectric media is discussed in con-
junction with S parameters to derive the button gain coefficient ge and an analytic expression for
the signal from time domain reflectometry (TDR) measurement on a cable and a button.  The
results can be used to measure the button capacitance and the characteristic impedances of the
cable and the button feedthrough.  Since ge is a function of S parameters and the button capaci-
tance Cp, a suggestion is made to make the gain coefficients the same for all four buttons in a
BPM by carefully matching the buttons and the cables.

1. Introduction

In order to achieve the stringent performance specifications for the beam position moni-
tors (BPMs) in the APS storage ring as shown in Table 1.1, it is necessary to calibrate the offset
and the sensitivity of all BPMs with an accuracy of less than 30 µm in both the horizontal and
the vertical directions.  Because the BPM is an integral part of the vacuum chamber (≈ 5 m
long), it will be very difficult to calibrate the BPMs using wire suspended inside the vacuum
chamber.

The external calibration method developed by G. Lambertson1-4 requires only measure-
ments of coupling between two sets of buttons and cables using a network analyzer.  With four
buttons for each BPM, 12 such measurements are needed, from which are derived the four gain
coefficients associated with each set of a button and a cable.  In Lambertson’s theory1, the gain
coefficient ge was expressed as

ge �

S12
1� S11

.
(1.1)

S11 is the reflection coefficient on the feedthrough’s side for the combination of all cables, con-
nectors, and the feedthrough, and S12 is the transmission coefficient for either direction.

The gain coefficient ge is a function of frequency and Eq. (1.1) is valid when the frequen-
cy is low enough.  With a button capacitance Cp and characteristic impedance Z0, the relevant
time scale is CpZ0.  Therefore, when ωCpZ0 is comparable to or larger than 1, more rigorous
treatment is needed in deriving the gain coefficient.  For the APS beam position monitoring sys-
tem the signal detection is done at the fundamental RF frequency of 351.92 MHz and typical
button capacitance is 5 pF, which gives ωCpZ0 = 0.553.
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Table 1.1: APS Storage Ring Beam Position Monitor Specifications.

In the following sections we will first discuss the problem of wave propagation in multi-
ple dielectric media, e.g., cables, connectors, and feedthroughs.  Coefficients of reflection and
transmission will be derived in conjunction with S parameters.  Then a more generalized theory
will be developed for calibrating the electrical offset using external means which takes into ac-
count the effect of finite button capacitance.  We will also discuss use of time domain reflecto-
metry (TDR) to determine the button capacitance and the characteristic impedances of cables
and feedthroughs.  If these can be accurately measured, buttons and cables can be sorted and
matched in such a manner that the gain coefficients for the four buttons are nearly identical,
whereby the electrical offset becomes negligibly small.  A summary of this article will be pres-
ented in the last section.

2. Wave Propagation in Multiple Media

In this section, we will treat propagation of voltage and current waves in dielectric media,
such as cables, connectors, and button feedthroughs.
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Fig. 2.1: Multiple waveguides connected in series.  The n-th cable, with the 
characteristic impedance of  Zn, starts at z = zn and ends at z = zn+1.

Consider multiple cables connected in series as shown in Fig. 2.1.  We assume that there
are total of m such cables.  The n-th cable, with the characteristic impedance of Zn, starts at z =
zn and ends at z = zn+1.  Let V(z,t) and I(z,t) be the voltage and the current at point z and at time
t.  With the series resistance Rn, the series inductance Ln, the conductance Gn, and the shunt ca-
pacity Cn, the voltage and current satisfy the relations5

�V
�z � � Rn I � Ln

�I
�t , �I

�z � � GnV � Cn
�V
�t , (n � 1, ..., m)

(2.1)

in the n-th cable.  In the following discussion, we will ignore Rn and Gn and consider only dis-
persionless and lossless cables.  Ln and Cn are given as

Ln �

�n
2�

log
bn
an

, Cn �

2��n

logbn
an

.  (2.2)

an and bn are the radii of the inner and the outer conductors in the cable.  Thus we have



�V
�z � � Ln

�I
�t , �I

�z � � Cn
�V
�t . (n � 1, ..., m) (2.3)

There are a couple of techniques to solve Eq. (2.3).  In this section we will consider the
case of continuous wave, and apply Fourier transform to obtain the reflection and transmission
coefficients.  A different method involving Laplace transform will be used later to solve the
problem of TDR.

Combining the two equations in Eq. (2.3), we obtain

�
2V
�z2 �

1
v

n 2
�

�
2V
�t2

� 0, (zn � z � zn�1) (2.4)

where vn = 1/ LnCn



.  Write the voltage wave V(z,t) as

V(z, t) � �

�

��

dk {A n(k)eik(z�zn)
� Bn(k)e�ik(z�zn)}e�iknvt. (zn � z � zn�1) (2.5)

Then from Eq. (2.3), we have the current I(z,t) as

I(z, t) �

1
Zn
�

�

��

dk {A n(k)eik(z�zn)
� Bn(k)e�ik(z�zn)}e�iknvt. (zn � z � zn�1) (2.6)

where Zn = Ln/Cn
  is the characteristic impedance of the n-th cable.  The first terms in Eqs. (2.5)
and (2.6) represent the forward-traveling wave and the second terms represent the backward-
traveling wave.  The ratio Rn(k) = Bn(k) / An(k) is the reflection coefficient in the n-th cable.
The continuity of V(z,t) and I(z,t) at the boundary between the n-th and the (n+1)-th cables gives

An�1 � Bn�1 � Aneikl n
� Bne�ikl n. (2.7)

1
Zn�1

(An�1 � Bn�1) �

1
Zn

(Aneikl n
� Bne�ikl n). (2.8)

From Eqs. (2.7) and (2.8), with Rn = Bn / An,

Zn
1� Rne�2ikln

1� Rne�2ikln
� Zn�1

1� Rn�1
1� Rn�1

. (2.9)

or,

Rn � e2ikln

Zn�1

Zn

1�Rn�1

1�Rn�1
� 1

Zn�1

Zn

1�Rn�1

1�Rn�1
� 1

.  (2.10)

ln = zn+1 – zn is the length of the n-th cable.  Equation (2.10) is the recursion relation for finding
Rn once the reflection coefficient in the last cable (n = m) is known.  This procedure will deter-
mine the reflection coefficients in all the cables.  From Eq. (2.7),

An�1 �

1� Rne�2ikln

1� Rn�1
eikl nAn

� �
1� Rne�2ikln

1� Rn�1
	 �

1� Rn�1e
�2ikln

1� Rn
	 ... �

1� R1e
�2ikl1

1� R2
	 eik�l nA1,    (2.11)



 Bn�1 � Rn�1An�1.

A1 A2 A3
B1 B2

Z1
z=0

Z2
z=L

Z3

Fig. 2.2:  Three cables connected in series.  The third cable is terminated 
so that there is no backward-traveling wave.  l1 is taken to be zero.

Consider an example of three cables connected in series as shown in Fig. 2.2.  Since it is
assumed that there is no reflected wave in cable 3, we put R3 = 0.  Using Eq. (2.10), we have

R2 � e2ikL Z3 � Z2
Z3 � Z2

,

R1 �

Z2

Z1

Z3�iZ2 tan (kL)
Z2�iZ3 tan (kL) � 1

Z2

Z1

Z3�iZ2 tan (kL)
Z2�iZ3 tan (kL)� 1

.  (2.12)

3. S parameters

Consider a cable of length L and characteristic impedance Zc.  We want to calculate the S
parameters of this cable attached to cables with the characteristic impedance ZT as shown in Fig.
3.1.  It is assumed that the instrument ports are properly terminated with resistors ZT so that there
is no reflection.

A1 A2 A3
B1 B2 B3

ZT Zc ZT

Fig. 3.1: Forward- and backward-traveling waves in a cable for S parameter measurement.

The An and Bn coefficients are related to each other through the S parameters:

�

B1

A3
� � �

S11 S12

S21 S22
� �

A1

B3
�. (3.1)

The S parameters are

S11 � �
B1
A1
�

B3�0

, S12 � �
B1
B3
�

A 1�0

, S21 � �
A3
A1
�

B3�0

and S22 � �
A3
B3
�

A 1�0.

  (3.2)

This is the same situation as in Fig. 2.2 and S11 is the same as R1 in Eq. (2.12).  The transmission
coefficient S12 can be obtained using Eq. (2.11).  With Z1 = Z3 = ZT, Z2 = Zc and after some rear-
rangement, we obtain6

S11 � S22 �
� i(Zc2 � ZT2) tan (kL)

2 ZcZT � i(Zc2 � ZT2) tan (kL)
,  (3.3)



S12 � S21 �
2 sec (kL) ZcZT

2 ZcZT � i(Zc2 � ZT2) tan (kL)
,   (3.4)

for a single cable with characteristic impedance Zc.

Once the S parameters for a single cable are obtained, we can extend the calculation to
multiple cables connected in series.  Consider two sets of cables a and b, each comprising multi-
ple cables.  Let Sa and Sb be the corresponding S matrices and let S be the S matrix of the total
system combining a and b.  Then it can be shown that (see Appendix A)

S11 � Sa
11 �

Sa
12

Sa
21

Sb
11

1� Sa
22

Sb
11

,   (3.5)

S12 �
Sa

12
Sb

12

1� Sa
22

Sb
11

,  (3.6)

S21 �
Sa

21
Sb

21

1� Sa
22

Sb
11

, (3.7)

S22 � Sb
22 �

Sa
22

Sb
21

Sb
12

1� Sa
22

Sb
11

. (3.8)

Equations (3.6) and (3.7) show that if S
a

12� S
a

21 and S
b
12� S

b
21, then we have

S12 � S21. (3.9)

Since this is the case with a single cable, it is also true for any number of cables connected in se-
ries.

4. Button Gain Coefficients

In this section we will derive the button gain coefficient ge for a given current source in
terms of the S parameters.  A current source can be a charged particle beam, a wire, or a button
driven by an RF source, which induces a flow of charges through electromagnetic coupling.
Since the button has a finite capacitance Cp, some of the current flows through the capacitor to
the ground and some flows through the cables and a terminating resistor at the end.  This is
shown in Fig. 4.1(a).  Let I� be the current through the capacitor and let I be the current through
the cables.  Then, assuming harmonic time dependence e–iωt, we have I = I0 – I� = I0 + iωCpV,
which gives

A1 � I0Z1
1

1� R1 � i�CpZ1(1� R1)
. (4.1)

This is the boundary condition at z = 0.  On the other side of the cable we have V = ZTI, which
gives

Rm � e2iklm
ZT � Zm

ZT � Zm
. (4.2)



     

A1 Am
B1 Bm

0

Cp

A0
B0
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B1
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(b)

ZT

• • • •

• • • •
ZT ZT

�

Fig. 4.1:  (a) Button signal detection with current source I0. 
(b) S parameter measurement setup simulating the button signal measurement.

Eqs. (4.1) and (4.2) are the two necessary conditions to completely determine the An  and Bn co-
efficients in all the individual components.

In order to express the detected signal in terms of the S parameters, let us consider the
setup in Fig. 4.1(b).  This simulates the setup in Fig. 4.1(a) by correctly setting the input voltage
level A0.  The coefficients A0, B0, Am+1, and Bm+1 are related to each other by

�

B0

Am�1
� � �

S11

S21

S12

S22
��

A0

Bm�1
�. (4.3)

Since there is no reflection from the right side, we put Bm+1 = 0.  From Eq. (2.11) the coefficient
Am+1 can be written

Am�1 � eik�l n�
1� Rme�2iklm

1� Rm�1
��

1� Rm�1e
�2iklm�1

1� Rm
�...�

1� R0

1� R1
�A0 (4.4)

           � S21A0,

which is the detected signal at the end of the cable.  With

A0 � A1�
1� R1
1� R0

�, (4.5)

and the desired coefficient A1 given by Eq. (4.1), the input amplitude A0 is set to

A0 �
I0Z1

1� S11

1
1�R1

1�R1
� i�CpZ1

. (4.6)

where we used S11 = R0.  Also, from Eq. (2.9), we have

1� R1
1� R1

�

Z1
ZT

1� S11
1� S11

. (4.7)

Combining Eqs. (4.4), (4.6), and (4.7), we obtain the detected signal Vd



Vd � Am�1 � geI0ZT, (4.8)

where

ge �
S21

1� S11� i�CpZT
�1� S11

�

. (4.9)

This is the expression for the button gain coefficient that relates the induced current on the elec-
trode and the detected voltage.  Typically, |S11| << 1 and |S21| ≈ 1, and in the limiting case where
S11 = 0 and S21 = 1, geZT reduces to

geZT � �
1
Zt

� i�Cp�

�1

. (4.10)
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Fig. 4.2:  (a) A button driven externally by an RF source. 
(b) S parameter measurement setup to simulate driving the button externally.

Next, consider driving a button externally using an RF source.  The schematic is shown
in Fig. 4.2(a).  We use an approach similar to that described in the previous paragraph to express
the voltage on the button in terms of the S parameters.

The boundary condition at the capacitance is V = I
i�Cp

, which gives

1� R1
1� R1

�

1
i�CpZ1

. (4.11)

From this relationship and and from Eq. (2.10), we obtain

R0 �

Z1

ZT

1�R1

1�R1
� 1

Z1

ZT

1�R1

1�R1
� 1

�

1� i�CpZT

1� i�CpZT
. (4.12)

From Eq. (4.3), we have B0 = S11A0 + S12Bm+1, which gives

B0 �
S12R0

R0 � S11
Bm�1. (4.13)

Let Ve be the voltage on the electrode and let Vs = Bm+1 be the driving voltage at the RF source.
Then using Eqs. (4.12) and (4.13), we have

Ve � A0�B0



     �
2S21

1� S11� i�CpZT
�1� S11

�

VS (4.14)

      � geVs,

when S12 = S21.  Noted that the gain coefficient ge is the same as in Eq. (4.9).

5. Time Domain Reflectometry of Buttons

In this section, we will consider TDR measurement on buttons.  This technique can be
used to determine the S parameters of the cable and the button feedthrough by measuring the
cable length and the characteristic impedances and using Eqs. (3.3) and (3.4).

5.1 Theory

Taking the Laplace transform of Eq. (2.3), we obtain

�V
~
(z, s)
�z � Ln(sI

~
(z, s)� I(z, 0))� 0, (5.1)

�I
~
(z, s)
�z � Cn(sV

~
(z, s)� V(z, 0))� 0, (5.2)

where s is the Laplace transform variable.  Equations (5.1) and (5.2), together with the proper
boundary conditions, completely describe the system, and solutions for the voltage and current
can be obtained for all times t > 0 for given initial conditions V(z,0) and I(z,0).  Combining Eqs.
(5.1) and (5.2) gives

�
2V

~

�z2
� LnCns2 V

~
� � LnCnsV(z, 0), (5.3)

whose solution is (see Appendix B)

V
~
(z, s)� A
ne�hnz

� B
nehnz
�

hn
2s
�

�

��

dz
 ehn|z�z
|
�v(z
, 0)� 1�V

s�t (z
, 0)�, (5.4)

where hn = s LnCn
	  and A
n and B
n are functions of s yet to be determined.  A similar solution

can be obtained for the current, which is

I
~
(z, s)� 1

Zn
(A 


ne
�hnz

� B


nehnz) �
hn
2s
�

�

��

dz
 ehn|z�z
|
�I(z
, 0)� 1�I

s�t (z
0)�, (5.5)

where Zn = Ln/Cn	  is the characteristic impedance of the n-th cable.  The initial values for cur-

rent I(z
,0) and �I
�t (z
,0) can be found from the initial values for voltage V(z
,0) and�V

�t  (z
,0)

using Eq. (2.3).

As an example, suppose the initial conditions are

V(z, 0)� V0, in the cables,

�V
�t (z, 0)� 0.          for all z. (5.6)



V0 is the initial constant voltage level at t = 0.  Inserting Eq. (5.6) into Eqs. (5.4) and (5.5), we

can rewrite V
~ (z, s) and I

~(z,s) as

V
~
(z, s)� Ane�hn(z�zn)

� Bn ehn(z�zn)
�

V0
s ,  (5.7)

I
~

(z, s)� 1
Zn
�An e�hn(z�zn)

� Bn ehn(z�zn)�. (5.8)

An and Bn are new constants, into which were absorbed parts of the integral.  Assuming  harmon-
ic time dependence e–iωt, the first terms in Eqs. (5.7) and (5.8) represent the forward-traveling
wave and the second terms represent the backward-traveling wave.  The ratio Rn = Bn / An is the
reflection coefficient in the n-th cable.  The continuity of V

~
 and I

~
 at the boundary between the

n-th and the (n+1)-th cables gives a relation analogous to Eq. (2.9)

Zn �
1� Rne2hn1n

1� Rke
2hnln

� Zn�1
1� Rn�1
1� Rn�1

, (5.9)

or,

Rn � e�2hnln

Zn�1

Zn

1�Rn�1

1�Rn�1
� 1

Zn�1

Zn

1�Rn�1

1�Rn�1
� 1

.  

(5.10)

ln = zn+1 – zn is the length of the n-th cable.  Eq. (5.10) is the recursion relation for finding Rn

once the reflection coefficient in the last cable (n = m) is known.  This procedure will determine
the reflection coefficients in all the cables.  With an additional boundary condition in the first
cable (n = 1) giving the relation between A1 and B1, the problem is solved in principle.

5.2 TDR of an Open-Ended Cable

Let us take an example of an open-ended cable to apply the technique of TDR to measure
the length l and the characteristic impedance Zc.  The schematic of this TDR measurement is
shown in Fig. 5.1.  The measurement instrument has a variable current source which is con-
nected to the terminating resistor ZT.  Then a step pulse is generated when the current source is
switched off.  This pulse propagates out to the external device and the signal at the acquisition
point is detected as a function of time.

ZT Zc

I0

Fig. 5.1: The schematic of the time domain reflectometry measurement of an open-ended
cable of length l.  When t < 0, the switch at the current source is closed.  At t = 0, the switch

opens and the propagation of the voltage change begins to propagate to the right.



We apply the results obtained in Section 5.1 with the boundary conditions

V(0, t) � � ZTI(0, t) (5.11)

and

I(l, t) � 0. (5.12)

Taking the Laplace transform of Eqs. (5.11) and (5.12), we have

V
~
(0, s)� � ZTI

~
(0, s),  (5.13)

I
~
(l, s)� 0. (5.14)

These two boundary conditions and Eqs. (5.7), (5.8), and (5.10) determine the coefficients A1

and B1, which are given by

A1 �
I0ZTZC
ZT � Zc

1
s

1
1� r e�2s�t

, (5.15)

and

B1 �
I0ZTZc

ZT � Zc

1
s

e�2s�t

1� r e�2s�t
,  (5.16)

where

�t � 1
v , v �

1
LC


, and r�
ZT � Zc

ZT � Zc
. (5.17)

v is the wave propagation velocity in the cable, r is the impedance mismatch ratio and ∆t is the
time taken to propagate through the length of the cable.  Substituting Eqs. (5.15) and (5.16) into
Eq. (5.7), we get

V
~
(z, s)�

I0ZT
s �

ZC
ZT � Zc

e�sz�v
� es(z�2�t)�v

1� r e�2s�t
� 1	.  (5.18)

The desired voltage function V(z,t) can be obtained by doing the inverse-Laplace transform of
Eq. (5.18).  Since this cannot be done in a closed form, we expand V

~
(z,s) into a series by noting

that |r| e–2s∆t is always less than 1.  The result is

V
~
(z, s)�

I0ZT
s �

�

�

Zc
ZT � Zc

�e�sz�v
� es(z�v�2�t)

	 �

�

n�0

r�2ns�t
� 1�

�

�

. (5.19)

Now, from the relationship

e��sf
�

(s) Inverse� Laplace
�������

f(t � �),  (5.20)

the n-th term in the summation of Eq. (5.18) corresponds to time delay of 2n∆t and attenuation
of rn.  The time evolution of voltage V(z,t) is then the result of multiple reflections and transmis-
sions at the boundaries at z = 0 and z = l, which rapidly decays to zero when the impedance is
closely matched (|r| << 1).  The detected signal V(0,t) is then obtained from

V
~
(0, s)� �

I0ZT2

ZT � Zc

1
s�
�




1�

2ZC
ZT � Zc

�

�

n�1

rn�1e�2ns�t
�

�

�

. (5.21)



Since the inverse-Laplace transform of 1
s is the unit step function u(t) given by

u(t) ��




�

0,
1�2,
1,

t � 0
t � 0
t � 0

   (5.22)

we have

V(0, t) � �

I0ZT2

ZT � Zc
�




�

u(t)�
2Zc

2T � Zc
	

�

n�1

rn�1U(t � 2n�t)�
�




. (t � 0) (5.23)

When the impedance is matched (Zc = ZT), V(0,t) = 0 for t > 2∆t.  Otherwise, there are disconti-
nuities in the signal at every 2∆t.  Figure 5.2 shows a sample TDR signal of an open-ended cable
with ZT = 50 Ω, Zc = 100 Ω, and I0 = 10 mA.  For 0 < t < 2∆t, the signal level is constant at

V(0, t) � �

I0ZT2

ZT � Zc
. (0 � t � 2�t) (5.24)

Equation (5.24) can be used to determine the characteristic impedance and the length of a cable
by measuring the signal level and the time duration.
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Fig. 5.2: Theoretically derived TDR trace of an open-ended cable, 
with Z T = 50Ω, Zc = 100Ω, and I0 = 10 mA.

5.3 TDR of a Button

We now consider application of TDR to the measurement of the capacitance of the button
and the characteristic impedances of the button feedthrough and the connecting cable.  The sche-
matic of the TDR measurement is shown in Fig. 5.3.



         

ZT Z1

I0

Z2 Cp

Fig. 5.3: The schematic of the time domain reflectometry measurement of a cable and a
button with feedthrough.  When t < 0, the switch at the current source is closed.  

At t = 0, the switch opens and the propagation of the voltage change begins to 
propagate to the right.

We apply the results obtained in Section 5.1, with the boundary conditions

V(0, t) � � ZTI(0, t) (5.25)

and

I(l 1 � l 2, t) � Cp
�V
�t (l1 � l 2, t). (5.26)

l1 and l2 are the lengths of the connecting cable and the button feedthrough, respectively.  Taking
the Laplace transform of Eqs. (5.25) and (5.26), we have

V
~
(0, s)� � ZTI

~
(0, s), (5.27)

I
~
(11 � 12, s)� Cp�sV

~
(l1 � 12, s)� I0ZT

�. (5.28)

Here, the initial voltage V0 was set at –I0ZT.  The coefficients A1, B1, A2, and B2 in Eqs. (5.7) and
(5.8) can be obtained using Eqs. (5.10), (5.27), and (5.28).  The result is

A1 �
I0ZTZ1

ZT � Z1

1
s�(s)

�1� r2
s� �

s� �
e�2s�t2�, (5.29)

and

B1 � �

I0ZTZ1
ZT � Z1

e�2s�t1 1
s�(s)

�r2 �
s� �

s� �
e�2s�t2�.  (5.30)

Here,

�(s)� 1� r1r2 e�2s�t1
� r2

s� �

s� �
e�2s�t2

� r1
s� �

s� �
e�2s(�t1��t2).  (5.31)

and

�tn �
ln
vn

, vn �
1

LnCn
�

, (n� 1, 2)   (5.32)

   r1 �
ZT � Z1
ZT � Z1

, r2 �
Z1 � Z2
Z1 � Z2

, and � �

1
CpZ2

.

v1 and v2 are the phase velocities in the cable and the button feedthrough, respectively.  Now that
the coefficients A1 and B1 have been obtained, we insert these in Eq. (5.7) and do the inverse-La-
place transform.  The detected signal V(0,t) is then obtained from



V
~
(0, s)� A1 � B1 �

I0ZT
s . (5.33)

As we did in the previous section, we rewrite the coefficients A1 and B1 by expanding 1/ζ(s) into
a series.  The full expression is very complicated indeed involving products of multiple powers
of the terms in Eq. (5.31).  In order to use approximations, we assume that the length of the cable
is much longer than that of the feedthrough.  We also note that we are interested only in the time
interval 0 < t < 4∆t1, in which case we can truncate A1 and B1 at the second order of e–2s∆t1.
From Eqs. (5.29), (5.30), and (5.31), we obtain

A1 �
I0ZTZ1

ZT � Z1
� r1B1, (5.34)

and

B1 � �

I0ZTZ1
ZT � Z1

1
se�2s�t1

�

�




r2 � (1� r22) 

N�1

n�1

(� r2)
n�1e�2ns�t2�

s� �

s� �
	

n

�

�

�

. (5.35)

N = 
�t1
�t2

 is a large number.  The expressions for A1 and B1 in Eqs. (5.34) and (5.35) are good

only in the time interval 0 < t < 4∆t1.  From Eq. (5.33) we obtain

V
~
(0, s)�

ZT
ZT � Z1

�2B1 �
I0ZT

s 	. (5.36)

In Table 5.1 are listed functions un(t), the inverse-Laplace transforms of 1
s�

s – �
s + �

	

n
.  Since r2 is

typically very small, the series in Eq. (5.35) converges very rapidly and only a few terms are suf-
ficient for our purpose.

n un(t), t > 0

0 0

1 –1 + 2–�t

2 1 – 4�t e–�t

3 –1 + e–�t(2 – 4�t + 4�2t2)

    4 1� e��t
�8�t � 8�2t2 � 8�3t3

3
	

5 � 1� e��t
�2� 8�t � 16�2t2 � 8�3t3 � 4�4t4

3
	

6 1� e��t
�12�t � 24�2t2 � 56�3t3

3
�

16�4t4
3

�

8�5t5
15
	

Table 5.1: Inverse-Laplace transform of 1s �s – �
s + �

	

n
.

In terms of the functions un(t) listed in Table 5.1, V(0,t) can be written as

V(0, t) � �

I0ZT2

ZT � Z1
�u0(t) �

2Z1

ZT � Z1
�r2 u0(t � 2�t1) � (1� r

22)

N�1

n�1

(� r2)
n�1un(t � 2�t1 � 2n�t2)��. (5.37)



Equation (5.37) is the expression for the detected signal at the acquisition point for 0 < t < 4∆t2.
As an example, take
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l1 = 30 cm, l2 = 1 cm, r1 = 0.1, r2= –0.1,

I0 = 10 mA, ZT = 50 Ω,

v1 = v2  = 20 cm/nsec,

α = 1/CpZ2 = 1/(5×10–12×50) sec–1 = 4 /nsec.
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Fig. 5.4: Theoretically derived TDR trace of a button connected to a cable.  The constants
V1, V2, Va0, and Va1 are given in Eqs. (5.38), (5.39), (5.41), and (5.42), respectively.

The plotting of V(0,t) is shown in Fig. 5.4.  The several discontinuities are due to the standing
wave caused by the impedance mismatch among the terminating resistor, the cable, and the but-
ton feedthrough.  These may not show in the actual measurement because of the finite bandwidth
of detection.  The initial flat signal given by

V1 � �

I0ZT2

ZT � Z1
    (5.38)

corresponds to the propagation through the cable plus the reflection at the boundary between the
cable and the feedthrough.  The time duration is twice the length of the cable.  The second flat
signal given by

V2 �
I0ZT2

ZT � Z1
�1�

2Z1(Z1 � Z2)
(ZT � Z1)(Z1 � Z2)

� (5.39)

is the propagation through the button feedthrough.  This is again reflected at the button electrode.
The subsequent rise and exponential decay due to the button capacitance is intermittently inter-
rupted by the standing wave in the feedthrough, as shown by the discontinuities in the signal.  In



order to use this curve to estimate the button capacitance, these discontinuities must be smeared
out by averaging, which is partly done by the filtering due to the finite bandwidth of the instru-
ment.  The finite bandwidth also introduces bumps at the transitions between the cable, the feed-
through, and the electrode.  (In the real measurement, the voltage signal exhibits oscillations for
a long time as shown in Fig. 5.6(b), and further smoothing and fitting is necessary.)  In the limit
∆t2 << ∆t1 and to the first order of r1 and r2, the voltage Va(t > 2(∆t1 + ∆t2)) is given by

Va)t	 � Va0� Va1e
�(1�2r2)�t	, (5.40)

where t’ = t – 2(∆t1 + ∆t2).  The constants Va0 and Va1 are given by

Va0� �

I0ZT2(ZT � Z1)

�ZT � Z1
�

2 , (5.41)

and

Va1� �

4I0ZT2
Z1)

�ZT � Z1
�

2  (5.42)

In Eq. (5.40), substitution was made for 1 + 2r2αt	 → e2r2αt	.  The time constant of decay is

� �
1

�(1� 2r2)
� Cp�Z1 �

(Z1 � Z2)
2

3Z2 � Z1
� � CpZ1. (5.43)

The second term in Eq. (5.43) was dropped in the last step, since it is of the second order in r2.
From Eq. (5.43), the button capacitance can be estimated by measuring the decay time constant
and the characteristic impedance of the cable.

5.4 Measurement

In this section, we will give an example of measuring the characteristic impedance of the
cable, the button feedthrough, and the button capacitance using TDR.  Figures 5.5 and 5.6 show
the measured TDR traces of a button and a cable.  The button is one of those to be installed in
the APS storage ring and has a female type SMA connector.  From Fig. 5.4, the initial voltage V0

= –I0ZT was measured to be –499.38 mV.  Since I0 and ZT cannot be measured separately, we set
I0 = 9.988 mA and ZT = 50 �.  The error due to this uncertainty is 0.12%.
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Fig. 5.5: Measured TDR trace of a cable and a button.  The switch at the current source
was opened at t = 61.7 nsec.  The initial voltage V0 = –I0ZT is –499.38 mV.
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decay of the signal.  The slight oscillation is due to imperfections in the junctions, e.g., the
connectors and the gap between the electrode and the feedthrough.

The trace in Fig. 5.6(a) shows the transition between the cable and the feedthrough The
two bumps at t ≈ 70 ns is due to the connector on the cable.  The characteristic impedance Z1 of



the cable is read from the straight line before 70 nsec, and the characteristic impedance Z2 of the
feedthrough is read from the plateau at t ≈ 70.1 nsec.  Using Eqs. (5.38) and (5.39), the measured
characteristic impedances are Z1 = 51.94 Ω and Z2 = 53.04 Ω.

The exponential decay due to the button capacitance is shown in Fig. 5.6(b).  The oscilla-
tion superimposed on the exponential decay has approximately 13 GHz frequency (T = 77 psec).
The measured time constant of decay τ is 0.262 nsec, and using Eq. (5.43), the  capacitance is Cp

= 5.04 pF.

6. Application of Lambertson’s Method for Offset Calibration

Let Vm be the voltage applied at the m-th button and let Vn be the voltage measured at the
n-th button as shown in Fig. 6.1.  Then the normalized signal Vnm is given by1

Vnm �

Vn
Vm

� 2 ZT gn Gnm gm. (6.1)

gm gnVm VnGnm

Vem = 2gmVm  In = 2GnmgmVm Vn = 2ZTgnGnmgmVm

Fig. 6.1: The coupling between the buttons n and m.

Gnm is the capacitive coupling constant between buttons, and the gain coefficients gn are given by
Eq. (4.9).  Note that Vnm is a symmetric matrix.  With four buttons, up to 12 measurements of
Vnm may be made and the gain coefficients are expressed in terms of Vnm and Gnm as shown in
Eq. (6.2).  With these gain coefficients associated with the buttons (see Fig. 6.2), the electrical
center relative to the mechanical center of the BPM can be determined.
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Fig. 6.2: The schematic of the button configuration.  g’s represent the gain associated with
the buttons.
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,

2·ZT·g22 �
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�
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V14

G23

G12G13
�
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, (6.2)

2·ZT·g32 �
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V42

G13

G12G23
�
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�
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2·ZT·g42 �

V43V14
V31

G13

G12G23
�

V43V42
V32

G23

G12G13
�

V14V42
V21

G12
G23G13

,

If we assume 2-D symmetry of the button configuration, that is, G12 = G34, G14 = G23, and
G13 = G24, the gain factors can then be obtained from three alternative combinations of the mea-
sured Vnm as shown in Eq. (6.1).  Since we are interested in the ratios of the gain factors, the val-
ues of G’s need not be known.

7. Nullification of Offset by Matching

From Eq. (4.9) the gain coefficient ge is a function of S11, S12 (or S21) and Cp, and from
Eqs. (3.3) and (3.4), S parameters are again functions of the characteristic impedance and the
cable length.  These parameters can be measured using TDR as described in Section 5, or alter-
natively using a network analyzer.  Once the measurements of the capacitance Cp and the charac-
teristic impedance Zp on buttons and the characteristic impedance Zc and the cable length Lc are
done on a large number (≈ 2,000) of buttons and cables, the buttons will be sorted in fours with
closely matching Cp and Zp, and the cables will be sorted likewise.  The characteristic imped-
ances Zp and Zc need not be matched.  This way, the gain coefficients ge  can be made uniform
among the four buttons and extra offset calibration may not be necessary.

8. Summary

In this note, a basic theory of wave propagation in dielectric media was discussed in con-
junction with S parameters to derive the button gain coefficients ge and an analytic expression
for the signal from TDR measurement on a cable and a button.  These formulas in Eqs. (4.9),
(5.38), (5.39), and (5.43) can be used to measure the button capacitance and the characteristic
impedances of the cable and the button feedthrough.  S parameters can again be written in terms
of the characteristic impedance and the length of the cable as in Eqs. (3.3) and (3.4).

Since ge is a function of S parameters (S11 and S12) and the button capacitance Cp, it is
possible to make the gain coefficients the same for all four buttons in a BPM by carefully match-
ing the buttons and the cables.

Appendix A. S parameters of combined devices.

A1

B1

A2

B2

A3

B3
Sa Sb

Fig. A.1:  Two devices with S parameters Sa and Sb connected in series.

Consider two devices with S parameters Sa and Sb as shown in Fig. A.1.  We want to ob-
tain the S parameter of the combined system as a function Sa and Sb.  This new S parameter re-
lates A1, B1, A3 and B3.  Let A2 and B2 be the amplitudes of the forward-traveling and the back-
ward traveling wave between the devices a and b.  Then we have

�

B1

A2
� � Sa

�

A1

B2
� and�

B2

A3
� � Sb

�

A2

B3
�. (A.1)

Eliminating A2 and B2 from Eq. (A.1), we obtain
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This gives Eqs. (3.5) to (3.8).



Appendix B. Solution of �
2V

~

�z2
� h2V

~
� �

h2

s V(z, 0).

In this appendix, we obtain the solution of Eq. (5.6),

�
2V

~

�z2
� h2V

~
� �

h2

s V(z, 0), (B.1)

where h = s LC
 .  The homogeneous solution V
~

h is easily obtained as

V
~
(z, s)� A e�hz

� Behz. (B.2)

A and B are arbitrary constants.  To obtain the particular solution V
~

p,  we will use the Green’s
function method.  Let G(z,z�) be the Green’s function which satisfies

�
2G(z, z�)
�z2

� h2G(z, z�) � �(z� z�). (B.3)

Then V
~

p  is written as

V
~

p �
h2

s �

�

��

dz� G(z, z�)V(z�, 0). (B.4)

Now, write

G(z, z�) � �

�




c1 e�h(z�z0)
� d1 eh(z�z0), z� z�

c2 e�h(z�z0)
� d2 eh(z�z0), z� z�

(B.5)

Since G(z,z�) should converge as z → ±∞, we have c2 = d1 = 0.  The continuity condition at z =
z� gives c1 = d2.  Integrating Eq. (B.3) from z�–δ and z�+δ (δ→0), we obtain

�
�G(z, z�)

�z
	

z�z���

��
�G(z, z�)

�z
	

z�z���

� 1, (B.6)

which gives

c1 � d2 � �

1
2h

. (B.7)

From Eqs. (B.5) and (B.7), we have

G(z, z�) � �

1
2h

eh|z�z�| (B.8)

and from Eq. (B.4), we obtain

V
~

p �
h
2s
�

�

��

dz� eh|z�z�|V(z�, 0). (B.9)

The complete solution V
~
� V

~

h � V
~

p  is then, combining Eqs. (B.2) and (B.9),

V
~
� A e�hz

� B ehz
�

h
2s
�

�

��

dz� eh|z�z�|V(z�0) (B.10)



Acknowledgment

G. Decker is to be thanked for his support and stimulating discussions.

References

1. G. R. Lambertson, “Calibration of Position Electrodes Using External Measurements”,
LSAP Note-5, Lawrence Berkeley Laboratory, May 6, 1987

2. J. Hinkson, private communication.

3. G. Decker, Y. Chung and E. Kahana, “Progress on the Development of APS Beam Posi-
tion Monitoring System”, Proceedings of 1991 IEEE Particle Accelerator Conference.

4. Y. Chung and G. Decker, “Offset Calibration of the Beam Position Monitor Using Exter-
nal Means”, Proceedings of 1991 Accelerator Instrumentation Workshop.

5. J. Stratton, Electromagnetic Theory , MacGraw Hill, p. 283, 1941.

6. J. Slater, Microwave Electronics , D. van Nostrand, Chapter II, 1950.


